
© 2004 by Carnegie Mellon University

The SAE AADL Standard -
An Architecture Analysis & Design
Language for Embedded Real-Time

Systems

Ed Colbert
UML Profile of AADL

Absolute Software, USC
colbert@abssw.com

760-929-0612

Peter Feiler
Technical lead, editor

Software Engineering Institute
phf@sei.cmu.edu

412-268-7790

www.aadl.infowww.aadl.info 2© 2004 by Carnegie Mellon University

Tutorial Objectives

• Provide an overview of the SAE AADL Standard

• Introduce architecture-based development concepts

• Provide a summary of AADL notation capabilities

• Give an overview of AADL tools

www.aadl.infowww.aadl.info 3© 2004 by Carnegie Mellon University

Outline: An Introduction & Overview
• Overview of SAE AADL Standard
• Model-Based Architecture-Driven System Engineering
• AADL-Based Development Environment
• Case Studies
• AADL Language Concepts
• Open Source AADL Tool Environment
• UML Profile of AADL
• Summary

www.aadl.infowww.aadl.info 4© 2004 by Carnegie Mellon University

SAE Architecture Analysis & Design
Language (AADL)

• Specification of
– Real-time
– Embedded
– Fault-tolerant
– Securely partitioned
– Dynamically configurable

• Software task and communication architectures
• Bound to

– Distributed multiple processor hardware architectures

• Fields of application
– Avionics, Automotive, Aerospace, Autonomous systems, …

www.aadl.infowww.aadl.info 5© 2004 by Carnegie Mellon University

An SAE Standard
• Based on 15 Years of DARPA funded technologies
• Core language standard has been approved

• Sponsored by
– SAE International
– Avionics Systems Division (ASD)
– Embedded Systems (AS2)
– AADL Subcommittee (AS-2C)

• Contact
– Bruce Lewis AS-2C chair, bruce.a.lewis@us.army.mil
– http://www.aadl.info
– For Information email to info@aadl.info

www.aadl.infowww.aadl.info 6© 2004 by Carnegie Mellon University

SAE AS-2C AADL Subcommittee
• Bruce Lewis (US Army AMRDEC): Chair
• Peter Feiler (SEI): technical lead, author & editor
• Steve Vestal (Honeywell): co-author
• Ed Colbert (USC): UML Profile of AADL
• Joyce Tokar (Pyrrhus Software): Ada & C Annex
Other Voting Members
• Boeing, Rockwell, Honeywell, Lockheed Martin,

Raytheon, Smith Industries, General Dynamics,
Airbus, Axlog, European Space Agency, TNI,
Dassault, EADS, High Integrity Solutions

Coordination with
• NATO Aviation, NATO Plug and Play, French

Government COTRE, SAE AS-1 Weapons Plug and
Play, OMG UML & SysML

www.aadl.infowww.aadl.info 7© 2004 by Carnegie Mellon University

Potential Users

• Airbus
• European Space Agency
• Rockwell Collins
• Lockheed Martin
• Smith Industries
• Raytheon
• Boeing FCS
• Common Missile
• System Plug and Play

Apply AADL for systems
integration modeling & analysis

Modeling of Satellite
Systems, Architecture
Verification - ASSERT

Modeling of Avionics
Computer System

New System Engineering Approach
incorporates AADL

NATO/SAE AS1 Weapon
System Integration

Embedded System
Engineering & AADL

www.aadl.infowww.aadl.info 8© 2004 by Carnegie Mellon University

AADL Status
• Requirements document SAE ARD 5296

– Input from aerospace industry
– Balloted and approved in 2000

• SAE AADL document SAE AS 5506
– Core language approved by SAE Sept 2004

• In review to be balloted Fall 2004
– Graphical AADL notation
– UML profile of AADL for UML1.4 and UML 2.0
– XMI domain model, XML schema
– Ada and C Annex

• In development
– Error Model Annex
– ARINC 653 Annex

www.aadl.infowww.aadl.info 9© 2004 by Carnegie Mellon University

MetaH: Proof of Concepts for AADL
1991 DARPA DSSA program begins
1992 Partitioned PFP target (Tartan MAR/i960MC)
1994 Multi-processor target (VME i960MC)
1995 Slack stealing scheduler
1998 Portable Ada 95 and POSIX middleware configurations
1998 Extensibility through MetaH-ACME Mapping
1998 Reliability modeling extension
1999 Hybrid automata verification of core middleware modules

Numerous evaluation and demonstration projects, e.g.
Missile G&C reference architecture, demos, others (AMCOM SED)
Hybrid automata formal verification (AFOSR, Honeywell)
Missile defense (Boeing)
Fighter guidance SW fault tolerance (DARPA, CMU, Lockheed-Martin)
Incremental Upgrade of Legacy Systems (AFRL, Boeing, Honeywell)
Comanche study (AMCOM, Comanche PO, Boeing, Honeywell)
Tactical Mobile Robotics (DARPA, Honeywell, Georgia Tech)
Advanced Intercept Technology CWE (BMDO, MaxTech)
Adaptive Computer Systems (DARPA, Honeywell)
Avionics System Performance Management (AFRL, Honeywell)
Ada Software Integrated Development/Verification (AFRL, Honeywell)
FMS reference architecture (Honeywell)
JSF vehicle control (Honeywell)
IFMU reengineering (Honeywell)

www.aadl.infowww.aadl.info 10© 2004 by Carnegie Mellon University

UML Profile

AADL in Context
Research ADLs
• MetaH

– Real-time, modal, system family
– Analysis & generation
– RMA based scheduling

• Rapide, Wright, ..
– Behavioral validation

• ADL Interchange
– ACME

Industrial Strength
• UML 2.0, UML-RT
• HOOD/STOOD
• SDL

AADL
Extensible
Real-time

Dependable

Basis

Influence

Alignment

Enhancement

Airbus & ESA

Extension

DARPA Funded
Research since 1990

www.aadl.infowww.aadl.info 11© 2004 by Carnegie Mellon University

AADL/UML Relationship

UML 2.0

UML-RT
Performance
Timeliness

UML 1.4
Detailed design

AADL
Core

Dependability

Security

AADL Annexes
UML Working Groups

AADL
UML Profile

AADL Annexes
UML Working Groups

Embedded
Software System

Engineering

System Engineering

SysML
To Be submitted to
OMG for Adoption

www.aadl.infowww.aadl.info 12© 2004 by Carnegie Mellon University

Outline: An Introduction & Overview
• Overview of SAE AADL Standard
• Model-Based Architecture-Driven System Engineering
• AADL-Based Development Environment
• Case Studies
• AADL Language Concepts
• Open Source AADL Tool Environment
• Summary

www.aadl.infowww.aadl.info 13© 2004 by Carnegie Mellon University

Typical Software Development Process

Requirements
Analysis Design Implementation Integration

Manual, Paper Intensive, Error Prone, Resistant to Change

High Risk
System Integration

High Development &
Maintenance Cost

Little
Insight

www.aadl.infowww.aadl.info 14© 2004 by Carnegie Mellon University

Embedded Systems Development Concerns

• Incomplete capture of specification and design
• Little insight into non-functional system properties until

system integration & test
– Performance (e.g., Throughput, Quality of Service)
– Safety - Reliability
– Time Critical - Security
– Schedulability - Fault Tolerance

• System Integration - high risk
• Evolvability – very expensive
• Life Cycle Support – very expensive
• Leads to rapidly outdated components

www.aadl.infowww.aadl.info 15© 2004 by Carnegie Mellon University

Model-Based System Engineering

Requirements
Analysis

System
Integration

Predictive Analysis Early In & Throughout Life Cycle

Architecture-Driven Development

Architecture Modeling & Analysis

Rapid Integration
Predictable Operation

Upgradeability
Reduced Cost

www.aadl.infowww.aadl.info 16© 2004 by Carnegie Mellon University

Ambulatory

Information
Fusion

Supply
ChainMechanized

Sensor
& Signal
Processing

System Integration
•Runtime System Generation
• Application Composition
• System Configuration

Devices Memory Bus Processor

AADL-Based System Engineering

Automatic
Target
Recognition

Guidance
& Control

System Analysis
• Schedulability
• Performance
• Reliability
• Fault Tolerance
• Dynamic Configurability

Architecture
Modeling

Abstract, but
Precise

HTTPSDBGPS Ada Runtime

Execution
Platform

.

Application
Software

Software
System
Engineer

Composable
Components

Predictive
System

Engineering
Reduced

Development &
Operational Cost

www.aadl.infowww.aadl.info 17© 2004 by Carnegie Mellon University

Focus Of SAE AADL
• Component View

– Model of system composition & hierarchy
– Well-defined component interfaces

• Concurrency & Interaction View
– Time ordering of data, messages, and events
– Dynamic operational behavior
– Explicit interaction paths & protocols

• Execution view
– Execution platform as resources
– Binding of application software
– Specification & analysis of runtime properties

• timeliness, throughput, reliability, graceful degradation, …

www.aadl.infowww.aadl.info 18© 2004 by Carnegie Mellon University

What Is Involved In Using The AADL?

• Specify software & hardware system architectures

• Specify component interfaces and implementation
properties

• Analyze system timing, reliability, partition isolation

• Tool-supported system integration

• Verify source code compliance & middleware
behavior

Model and analyze early and
throughout product life cycle

www.aadl.infowww.aadl.info 19© 2004 by Carnegie Mellon University

Evolutionary Development

• A control systems simulation perspective
• A model-based architecture perspective
• An integrated perspective

www.aadl.infowww.aadl.info 20© 2004 by Carnegie Mellon University

A Control Engineer Perspective

with Text_IO;
package Main is

begin

type real is digits 14;
type flag is boolean;

x : real := 0.0;
ready : flag := TRUE;

K1 K2s
+

-

Matlab

Component Analysis

Application Code

with Text_IO;
package Main is

begin

type real is digits 14;
type flag is boolean;

x : real := 0.0;
ready : flag := TRUE;

Simulink

Tune parameters

Continuous feedback for
a control engineer

Validate simulation

Continuous
feedback

in a controller

www.aadl.infowww.aadl.info 21© 2004 by Carnegie Mellon University

A Software System Engineer Perspective
with Text_IO;
package Main is

begin

type real is digits 14;
type flag is boolean;

x : real := 0.0;
ready : flag := TRUE;

AADL Tools

with Text_IO;
package Main is

begin

type real is digits 14;
type flag is boolean;

x : real := 0.0;
ready : flag := TRUE;

AADL Runtime
package Dispatcher is

A.p1 := B.p2;
Case 10ms:

dispatch(a);
dispatch(b);

T1 T2 T3 T4

12 12 5 6
23 34 8 8
24 23 234

Timing analysisReliability analysis R1 R2 R3 R4

12 12 5 6
23 34 8 8
24 23 234

T1 T2 T3 T4

12 12 5 6
23 34 8 8
24 23 234

T1 T2 T3 T4

12 12 5 6
23 34 8 8
24 23 2 34

Runtime
Data

R1 R2 R3 R4

12 12 5 6
23 34 8 8
24 23 234

Refine properties

Continuous feedback for
software system engineer

Application
Components

AADL-based
Architecture Model

Execution
Platform

www.aadl.infowww.aadl.info 22© 2004 by Carnegie Mellon University

A Combined Perspective

with Text_IO;
package Main is

begin

type real is digits 14;
type flag is boolean;

x : real := 0.0;
ready : flag := TRUE;

K1 K2s
+

-

Matlab Component Analysis

Application Code
with Text_IO;
package Main is

begin

type real is digits 14;
type flag is boolean;

x : real := 0.0;
ready : flag := TRUE;

Simulink
Tune parameters

Continuous interaction
between

Control engineer
& system engineer

Validate simulationAADL-based
Architecture Models

AADL Tools AADL Runtime
package Dispatcher is

A.p1 := B.p2;
Case 10ms:

dispatch(a);
dispatch(b);

T1 T2 T3 T4

12 12 5 6
23 34 8 8
24 23 234

Timing analysisReliability analysis R1 R2 R3 R4

12 12 5 6
23 34 8 8
24 23 234

T1 T2 T3 T4

12 12 5 6
23 34 8 8
24 23 234

T1 T2 T3 T4

12 12 5 6
23 34 8 8
24 23 2 34

Runtime
Data

R1 R2 R3 R4

12 12 5 6
23 34 8 8
24 23 234

Refine properties

www.aadl.infowww.aadl.info 23© 2004 by Carnegie Mellon University

Partitioning of Responsibilities:
The Application Engineer
Application design perspective

Data content properties
Stream completeness characteristics

Phase delay & timeliness

Software
Component

Software
Component

Software
Component

AADL
Runtime Executive

Executive code generated from AADL
Real-time OS API

Application implementation perspective
Ports accessible as variables

Port variable values not overwritten during execution
Control flow via events & messages

Initialize, activate, deactivate, compute, recover, finalize
entrypoints

www.aadl.infowww.aadl.info 24© 2004 by Carnegie Mellon University

Partitioning of Responsibilities:
The Software System Engineer

Software
Component

Software
Component

Software
Component

AADL
Runtime System

Executive code generated from AADL

Task & Communication Perspective
Task dispatch & deadlines

Timely & deterministic communication
Dynamic reconfiguration

Real-time OS API

Runtime System perspective
Rate groups, priorities & dispatch order
Coordinated dispatch & communication

Double buffering where necessary
Shared variables where appropriate

www.aadl.infowww.aadl.info 25© 2004 by Carnegie Mellon University

A Partitioned Portable Architecture

Strong Partitioning
• Timing Protection
• OS Call Restrictions
• Memory Protection

Interoperability/Portability
• Tailored Runtime Executive
• Standard RTOS API
• Application Components

Real-Time Operating System

Application
Software

Component

Embedded Hardware Target

AADL Runtime System

Application
Software

Component

Application
Software

Component

Application
Software

Component

www.aadl.infowww.aadl.info 26© 2004 by Carnegie Mellon University

Predictable System Integration
• Requirements, predicted, and actual properties
• Application components designed against functional

and non-functional properties
• Application code separated from task dispatch &

communication code
• Consistency between task & communication model

and implementation through generation
• Feedback into model parameters: refinement of

estimated performance values

www.aadl.infowww.aadl.info 27© 2004 by Carnegie Mellon University

Outline: An Introduction & Overview
• Overview of SAE AADL Standard
• Model-Based Architecture-Driven System Engineering
• AADL-Based Development Environment
• Case Studies
• AADL Language Concepts
• Open Source AADL Tool Environment
• Summary

www.aadl.infowww.aadl.info 28© 2004 by Carnegie Mellon University

Application Development Environment

re-engineering
of legacy
software

traditional
development

target hardware
specifications

SimuLink

other
specialized

tools

AADL-Based
Software & Systems
Integration Toolset

AADL-Based
Software & Systems
Integration Toolset

Complete, Validated
Executable System

Complete, Validated
Executable System

Application
Development

Tools

Application
Development

Tools

www.aadl.infowww.aadl.info 29© 2004 by Carnegie Mellon University

An XML-Based AADL Tool Strategy

Declarative AADL
XML

Textual
AADL

Graphical
AADL
Editor

Scheduling
Analysis

Reliability
Analysis

Filter to Markov
Analysis

AADL Instance
XML

Commercial
Tool like
TimeWiz

Execution
Platform Binding

Safety
Analysis

Project-Specific
In-House

AADL Runtime
Generator

Graphical Layout
XML

Semantic
Checking

www.aadl.infowww.aadl.info 30© 2004 by Carnegie Mellon University

Two-Tier Tool Strategy

• Open Source AADL Tool Environment (OSATE)
– Developed by SEI
– Low entry cost solution (no cost GPL)
– Multi-platform based on Eclipse
– Prototyping environment for project-specific analysis
– Architecture research platform

• Commercial Tool Support
– UML tool environment extension based on UML profile
– Extension to existing modeling environment with AADL

export/import
– Analysis tools interfacing via XML or XML to native filter
– Runtime system generation tools

www.aadl.infowww.aadl.info 31© 2004 by Carnegie Mellon University

Open Source AADL Tool Environment
• OSATE is

– Developed by the Software Engineering Institute
– Available at under a no cost General Purpose License (GPL)
– Implemented on top of Eclipse Release 3 (www.eclipse.org)
– Generated from an AADL meta model
– A textual & graphical AADL front-end with semantic &

XML/XMI support
– Extensible through architecture analysis & generation plug-ins

• OSATE offers
– Low cost entrypoint to the use of SAE AADL
– Platform for in-house prototyping of project specific

architecture analysis
– Platform for architecture research with access to industrial

models & industry exposure to research results

www.aadl.infowww.aadl.info 32© 2004 by Carnegie Mellon University

Potential Tool Support Areas
• Architecture extraction/import from existing

representations
– UML designs, Simulink models, application code

• Requirements tracing to the AADL design
• Non-functional properties analysis

– Scheduling, Real-time Simulation, Throughput, Latency,
Concurrency, Reliability, Security, Safety, …

• AADL Architecture consistency analysis
– High/low risk patterns and properties

• AADL Design Risk Assessment
• AADL Architectural Design Optimizer and Quality

Metrics
• Auto-document Generation
• Runtime system generation & optimization

www.aadl.infowww.aadl.info 33© 2004 by Carnegie Mellon University

Outline: An Introduction & Overview
• Overview of SAE AADL Standard
• Model-Based Architecture-Driven System Engineering
• AADL-Based Development Environment
• Case Studies
• AADL Language Concepts
• Open Source AADL Tool Environment
• Summary

www.aadl.infowww.aadl.info 34© 2004 by Carnegie Mellon University

Two Case Studies

• Pattern-based analysis of systemic issues
– Modernized avionics system architecture
– Change in real-time architecture concepts

• Full-scale analysis & integration
– Port of missile guidance system
– Tool-supported analysis & generation

www.aadl.infowww.aadl.info 35© 2004 by Carnegie Mellon University

AADL-Based Pattern Analysis
• SAE AADL employs

– Components with precisely defined execution semantics
– Explicit component interactions
– Separation of concerns

• Pattern-based architecture analysis approach
– Uses design patterns in analysis
– Identifies systemic problems early
– Enables the right choices with confidence
– Provides analysis-based decisions

www.aadl.infowww.aadl.info 36© 2004 by Carnegie Mellon University

An Avionics System Case Study

• Migration from static timeline to preemptive scheduling
– Identified issues with shared variable communication
– Migration potential from polling tasks to event-driven tasks

• Flexibility, predictability & efficiency of port-based
communication
– Support for deterministic transfer & optimized buffers

• Effectiveness of connection & flow semantics
– Bridge to control engineers
– Insulate from partition scheduling decisions
– Support end-to-end latency analysis

• Analyzable fault-tolerant redundancy patterns
– Orthogonal architecture view without model clutter

www.aadl.infowww.aadl.info 37© 2004 by Carnegie Mellon University

Shared
data
area

Switch clock mod
Hyperperiod
Case 20Hz:

call PIO
call NSP
call GP

Case 2*20Hz: -- 10Hz
call PIO
call NSP
call IN
call GP

Case 3*20Hz:
. . .

Case 4*20Hz: -- 5Hz

A Cyclic Executive Implementation

Navigation
Sensor

Processing

Integrated
Navigation

Guidance
Processing

Flight Plan
Processing

Aircraft
Performance
Calculation

20Hz

10Hz

20Hz

5Hz

2Hz

From other
Partitions

Periodic I/O
20Hz

To other
Partitions

Cyclic callout
implementation

1

2

3

4

5

6

www.aadl.infowww.aadl.info 38© 2004 by Carnegie Mellon University

A Naïve Thread-based Design

Navigation
Sensor

Processing

Integrated
Navigation

Guidance
Processing

Flight Plan
Processing

Aircraft
Performance
Calculation

20Hz

10Hz

20Hz

5Hz

2Hz

From other
Partitions

D
ec

re
as

in
g

Pr
io

rit
y

Periodic I/O
20Hz

To other
Partitions

Shared
data
area

Pr 1

Pr 2

Pr 3

Pr 4

Pr 6

Pr 9
Potential priority inversion due to

priority assignment

Potential non-deterministic
communication due to

preemption

Tasks must complete within frame
=> cyclic executive behavior

www.aadl.infowww.aadl.info 39© 2004 by Carnegie Mellon University

Flight Manager in AADL

Navigation
Sensor

Processing

Integrated
Navigation Guidance

Processing

Flight Plan
Processing

Aircraft
Performance
Calculation

20Hz

10Hz 20Hz

5Hz

2Hz

From
Partitions

To
Partitions

Fuel Flow

Guidance

Nav
sensor
data

Nav signal
data

FP data

Performance
data

Nav
dataNav sensor

data

Nav data

FP data

www.aadl.infowww.aadl.info 40© 2004 by Carnegie Mellon University

MetaH Case Study at AMCOM

• Reengineered Missile Application
– Missile on-board software and 6DOF environment simulation

originally in Jovial
– Ported to Ada83, executing on dual i80960MC, Tartan Ada,

VME Boards
– Built to Generic Missile Reference Architecture
– Specified in MetaH, 12 to 16 concurrent processes
– Timing analysis early in reengineering effort
– Runtime executive generated by MetaH toolset
– MetaH reduced total re-engineering cost 40% on first project

it was used on. Missile prime estimated savings at 66%.

www.aadl.infowww.aadl.info 41© 2004 by Carnegie Mellon University

MetaH Case Study at AMCOM - 2

• Missile Application ported to a new execution
environment
– Multiple ports to single and dual processor implementations
– New processors (Pentium and PowerPC), compilers, O/S
– First time executable, flew correctly on each target

environment
– Execution platform description and binding specification in

MetaH model
– Port of runtime executive virtual machine to new processor &

O/S
– Ports took a few weeks rather than 10 months

www.aadl.infowww.aadl.info 42© 2004 by Carnegie Mellon University

AMCOM Effort Saved Using MetaH

Review 3-DOF Trans-
late

6-DOF RT-
6DOF

Trans-
form

Test
6DOF

RT-
Missile

Build
Debug

Debug Re-target

MetaH

Current

Traditional
Approach

Using
MetaH0

1000

2000

3000

4000

5000

6000

7000

8000

M
an H

ours

Total project savings 50%, re-target savings 90%

First integration of
reengineered system

Retargeting to new
execution platform

Reengineering &
MetaH model analysis

www.aadl.infowww.aadl.info 43© 2004 by Carnegie Mellon University

Outline: An Introduction & Overview
• Overview of SAE AADL Standard
• Model-Based Architecture-Driven System Engineering
• AADL-Based Development Environment
• Case Studies
• AADL Language Concepts

– Components
– Component interaction & flows
– Faults & modes
– Large-scale development & extensions

• Open Source AADL Tool Environment
• Summary

www.aadl.infowww.aadl.info 44© 2004 by Carnegie Mellon University

AADL: The Language
Components with precise semantics

– Thread, thread group, process, system, processor, device, memory,
bus, data, subprogram

Completely defined interfaces & interactions
– Data & event flow, synchronous call/return, shared access
– End-to-End flow specifications

Real-time Task Scheduling
– Supports different scheduling protocols incl. GRMA, EDF
– Defines scheduling properties and execution semantics

Modal, configurable systems
– Modes to model transition between statically known states &

configurations
Component evolution & large scale development support
AADL language extensibility

www.aadl.infowww.aadl.info 45© 2004 by Carnegie Mellon University

Component-Based Architecture
• Specifies a well-formed interface

• All external interaction points defined as features

• Multiple implementations per component type

• Properties to specify component characteristics

• Components organized into system hierarchy

• Component interaction declarations must follow system
hierarchy

www.aadl.infowww.aadl.info 46© 2004 by Carnegie Mellon University

System Type
system GPS
features
speed_data: in data port metric_speed

{sei::miss_rate => 0.001 mps;};
geo_db: requires data access real_time_geoDB;
s_control_data: out data port state_control;

flows
speed_control: flow path

speed_data -> s_control_data
properties sei::redundancy => 2 X;
end GPS;

www.aadl.infowww.aadl.info 47© 2004 by Carnegie Mellon University

System Implementation
system implementation GPS.secure
subcomponents

decoder: system PGP_decoder.basic;
encoder: system PGP_encoder.basic;
receiver: system GPS_receiver.basic;

connections
c1: data port speed_data -> decoder.in;
c2: data port decoder.out -> receiver.in;
c3: data port receiver.out -> encoder.in;
c4: data port encoder.out -> s_control_data;

flows
speed_control: flow path speed_data -> c1 -> decoder.fs1

-> c2 -> receiver.fs1 -> c3 -> decoder.fs1
-> c4 -> s_control_data;

modes none;
properties sei::redundancy_scheme => Primary_Backup;
end GPS;

www.aadl.infowww.aadl.info 48© 2004 by Carnegie Mellon University

Application Components
• System: hierarchical organization of components

• Process: protected virtual address space

• Thread group: organization of threads in processes

• Thread: a schedulable unit of concurrent execution

• Data: potentially sharable data

• Subprogram: Callable unit of sequential code

process

Thread

data

Subprogram

Thread group

System

www.aadl.infowww.aadl.info 49© 2004 by Carnegie Mellon University

Thread Dispatch Protocols
• Periodic thread

– represents periodic dispatch of threads with typically hard
deadlines.

• Aperiodic thread
– represents event-triggered dispatch of threads with typically

hard deadlines.

• Sporadic thread
– represents dispatching of threads with minimum dispatch

separation and typically hard deadlines.

• Background thread
– represents threads that are dispatched once and execute until

completion.

5ms

B

5ms

Additional protocols
can be introduced

www.aadl.infowww.aadl.info 50© 2004 by Carnegie Mellon University

Thread Execution Semantics
• Nominal & recovery
• Fault handling
• Resource locking
• Mode switching
• Initialization & finalization

www.aadl.infowww.aadl.info 51© 2004 by Carnegie Mellon University

Some Thread Properties
Dispatch_Protocol => Periodic;
Period => 100 ms;
Compute_Deadline => value(Period);
Compute_Execution_Time => 20 ms;
Initialize_Deadline => 10 ms;
Initialize_Execution_Time => 1 ms;
Compute_Entrypoint => “speed_control”;
Initialize_Entrypoint => “speed_control_init”;
Source_Text => “waypoint.java”;
Source_Code_Size => 12 KB;
Source_Data_Size => 5 KB;

File containing the
application code

Dispatch execution
properties

Code function to be
executed on dispatch

www.aadl.infowww.aadl.info 52© 2004 by Carnegie Mellon University

Data Component
• Data component type represents data type

– Used for typing ports
– Optional modeling of operations

• Data component implementation
– Substructure modeling

• Data component
– Sharable between threads through data access connections
– Access properties
– Concurrency control protocol property

www.aadl.infowww.aadl.info 53© 2004 by Carnegie Mellon University

Execution Platform Components
• Processor – Provides thread scheduling and execution

services

• Memory – provides storage for data and source code

• Bus – provides physical connectivity between
execution platform components

• Device – interface to external environment

Processor

Device

Bus

Memory

www.aadl.infowww.aadl.info 54© 2004 by Carnegie Mellon University

Perspectives on Devices
• Hardware Engineer

– Device is part of physical system

• Application developer
– Device functionality is part of the

application software

• Control Engineer
– Device represents the environment

being controlled

Application

Physical Hardware

Processor

Device

Bus

Application System

FM Device
(Driver)

FD

Execution Platform

Bus

Processor

Control System

FM Plant
AP

Controlled Environment
Sensor

Actuator

www.aadl.infowww.aadl.info 55© 2004 by Carnegie Mellon University

Execution Platform Bindings

Flight Mgr

Warnings
Annunciations

MFD Pilot

MFD Copilot
data

1553

Weapons
Mgr

CoPilot Display

Display
Processor

Pilot Display

Display
Processor

High speed network

Mission
Processor

1553 bus

Processor, memory, and
connection bindings

Co-location
constraints
in support of
redundant
systems

www.aadl.infowww.aadl.info 56© 2004 by Carnegie Mellon University

Outline: An Introduction & Overview
• Overview of SAE AADL Standard
• Model-Based Architecture-Driven System Engineering
• AADL-Based Development Environment
• Case Studies
• AADL Language Concepts

– Components
– Component interaction & flows
– Faults & modes
– Large-scale development & extensions

• Open Source AADL Tool Environment
• Summary

www.aadl.infowww.aadl.info 57© 2004 by Carnegie Mellon University

Ports & Connections

Data port

Delayed data
connection

out

in

in out

Event port

Event data port

Immediate connection

Port group

Ports: directional transfer of data &
control

Data port: state, sampled data
streams

Event port: Queued, thread dispatch &
mode switch trigger

Event data port: queued messages

Port group: aggregation of ports into
single connection point

Immediate & delayed data connection:
deterministic data transfer semantics

www.aadl.infowww.aadl.info 58© 2004 by Carnegie Mellon University

Deterministic Communication Issues
Fixed-priority preemptive scheduling

– Better resource utilization
Efficient data stream communiation
• Shared variable communication within a processor

– Preemptive scheduling introduces non-deterministic read-write
order

• Single buffer send/receive communication within and
across processors
– Preemption and concurrency of threads result in non-

deterministic application level send/receive call ordering
The consequence

– Non-deterministic variation in latency & phase delay
– Appearance of noisy data to controllers

www.aadl.infowww.aadl.info 59© 2004 by Carnegie Mellon University

Deterministic Communication in AADL
• Data ports represent unqueued communication of data

streams
• Immediate & delayed connection timing semantics

assure deterministic data stream transfer
• Immediate connections constrain thread execution

order
• Delayed connections increase concurrency
• Implementation considerations

– Mutual exclusive port variable access
– Double buffering as appropriate
– AADL runtime system responsible for dispatch &

communication

www.aadl.infowww.aadl.info 60© 2004 by Carnegie Mellon University

Sampling & Delayed Connections

AADL assures
• Deterministic sampling & phase delay
• Requires double buffering as necessary

read_data control

10Hz 20Hz

Timeline

read_data read_data

control control

Ti,10Hz, 20Hz Ti+2,20HzTi+1,20Hz

Ti+1,10Hz

control

Read every value twice

control

Old data valuePreemption & concurrency
is possible

www.aadl.infowww.aadl.info 61© 2004 by Carnegie Mellon University

Flows in AADL
System S1

flow path F1

flow path F2

Flow Specification
F1: flow path pt1 -> pt2
F2: flow path pt1 -> pt3

pt2

pt3

pt1

Process P1

System implementation S1.impl

Process P2

Flow Implementation
F1: flow path pt1 -> C1 -> P2.F5

-> C3 -> P1.F7 -> C5 -> pt2

C1

C5C3

flow path F5

flow path F7

pt1

pt2

pt3

Connection

ActuatorController

flow path F1

C2
Sensor

C1

flow sink FS1flow source FS1

End-To-End Flow Declaration
SenseControlActuate: end to end flow Sensor.FS1 -> C1 ->

Controller.F1 -> C2 -> Actuator.FS1

www.aadl.infowww.aadl.info 62© 2004 by Carnegie Mellon University

Avionics Subsystem Architecture

Display
Manager

Warning Annunciation
Manager

Flight
Manager

Flight
Director

Page Content
Manager

Situation
Awareness

Weapons
Manager

Comm.
Manager

1553 Access

Observation: No direct
connection between
flight director and
page content manager

GPS
Opportunity for

connectivity
analysis

Cockpit
Display

www.aadl.infowww.aadl.info 63© 2004 by Carnegie Mellon University

Flight Director Command Flow

Display
Manager

Flight
Manager Flight

Director

Page Content
Manager

Cockpit
Display

Request for new page

New page content

www.aadl.infowww.aadl.info 64© 2004 by Carnegie Mellon University

Response Time Analysis
• Worst-case scenario

– Period delay per partition communication
• DM sampling latency (max. = partition period)
• Six periods of partition communication latency
• DM execution latency (max. = partition period)
• 0.4 seconds worst case response time
• 0.3 seconds best case response time

• Single processor static timeline
– One direction immediate, opposite direction phase delayed
– Reduces partition communication latency to three periods

• Multiple processor synchronous system
– Take into consideration bus/network latency

• Multiple processor asynchronous system
– Asynchronous sampling with max. sampling latency = period

www.aadl.infowww.aadl.info 65© 2004 by Carnegie Mellon University

Data Stream Latency Analysis
• Flow specifications in AADL
– Properties on flows: expected & actual end-to-end latency
– Properties on ports: expected incoming & end latency

• End-to-end latency contributors
– Delayed connections result in sampling latency
– Immediate periodic & aperiodic sequences result in

cumulative execution time latency

• Phase delay shift & oscillation
– Noticeable at flow merge points
– Variation interpreted as noisy signal to controller
– Analyzable in AADL

Potential hazard

Latency calculation &
jitter accumulation

www.aadl.infowww.aadl.info 66© 2004 by Carnegie Mellon University

Insights into Flow Characteristics

• Miss rate of data stream
– Accommodates incomplete sensor readings
– Allows for controlled deadline misses

• State vs. state delta communication
– Data reduction technique
– Events as state transitions
– Requirement for guaranteed delivery

• Data accuracy
– Reading accuracy
– Computational error accumulation

• Acknowledgement semantics in terms of flows

www.aadl.infowww.aadl.info 67© 2004 by Carnegie Mellon University

End-To-End Response
Commander

Battle Command B

BC Mission
Task order

Warfighter BWarfighter A

WF Mission
Task order A

WF Mission
Task order B

Expand Acknowledge

Issue Issue

ACK

Done

Acknowledged
Delivery

Plan
Expansion

Plan
Distribution

Action Target

Weapon
Released

Observer A

Observed
Result

Reported
Observation

Correlated
Observation

Sensor

Target

Action

Observer B

Sensor

Aggregated
Observations

Flow failures
Guaranteed delivery

Completion/Exception reporting
Independent observation

www.aadl.infowww.aadl.info 68© 2004 by Carnegie Mellon University

Outline: An Introduction & Overview
• Overview of SAE AADL Standard
• Model-Based Architecture-Driven System Engineering
• AADL-Based Development Environment
• Case Studies
• AADL Language Concepts

– Components
– Component interaction & flows
– Faults & modes
– Large-scale development & extensions

• Open Source AADL Tool Environment
• Summary

www.aadl.infowww.aadl.info 69© 2004 by Carnegie Mellon University

Faults and Modes
• AADL provides a fault handling framework with

precisely defined actions
• AADL supports runtime changes to task &

communication configurations
• AADL defines timing semantics for task coordination

on mode switching
• AADL supports specification of mode transition actions
• System initialization & termination are explicitly

modeled

www.aadl.infowww.aadl.info 70© 2004 by Carnegie Mellon University

Fault Management
• Fault containment

– Process as a runtime protected address space

• Fault recovery
– Within application code & thread local
– Error propagation

• Propagated error management
– Propagation through event connections
– Trigger reconfiguration through mode switching
– Monitoring & decision making through health monitor

Event queue processing by
aperiodic & periodic threads

www.aadl.infowww.aadl.info 71© 2004 by Carnegie Mellon University

Primary/Backup Configurations

SS1.2

CSS1 Primary

SS1.1

SS1.2

CSS1 Backup

SS1.1

SS1.2

SS1.1

SS1.2

SS1.1

Passive Backup Hot Standby

SS1.2

CSS1

SS1.1

SS1.2

CSS1

SS1.1

Continuous
State Exchange

State

CSS1 Primary

CSS1 Backup
Voted Output

SS1.3

www.aadl.infowww.aadl.info 72© 2004 by Carnegie Mellon University

Primary Backup Synchronization

WAM

WAM
Backup

state

state

20Hz

20Hz

Primary Backup

Reinit

Primaryfail

Primaryok

20Hz

Init/restart

Observer

Primary

• External and internal mode control
• Errors reported as events
• Supports reasoning about Primary/Backup logic

Mode

20Hz

www.aadl.infowww.aadl.info 73© 2004 by Carnegie Mellon University

Dual Redundancy Pattern
system PrimaryBackupPattern
features

insignal: data port;
outsignal: data port;

end PrimaryBackupPattern;

system implementation PrimaryBackupPattern.impl
subcomponents

Primary: system sys;
Backup: system sys;

connections
inPrimary: data port insignal -> Primary.insignal;
inBackup: data port insignal -> Backup.insignal;
outPrimary: data port Primary.outsignal -> outsignal;
outBackup: data port Backup.outsignal -> outsignal;

modes
Primarymode: initial mode;
Backupmode: mode;
Reinitmode: mode;
Backupmode –[restart]-> Reinitmode;
Reinitmode –[Primary.Complete]-> Primarymode;

end PrimaryBackupPattern.impl;

Defines a dual
redundant pattern

www.aadl.infowww.aadl.info 74© 2004 by Carnegie Mellon University

Refined Dual Redundancy Pattern
system PassivePrimaryBackup extends PrimaryBackupPattern
features

restart: in event port;
end PassivePrimaryBackup;

system implementation PassivePrimaryBackup.impl extends
PrimaryBackupPattern.impl

subcomponents
Primary: refined to system in modes (Primarymode);
Backup: refined to system in modes (Backupmode);
Reinit: system reloadsys in modes (Reinitmode);

connections
inPrimary: refined to data port in modes (Primarymode);
inBackup: refined to data port in modes (Backupmode);
outPrimary: refined to data port in modes (Primarymode);
outBackup: refined to data port in modes (Backupmode);

modes
Reinitmode: mode;
Backupmode –[restart]-> Reinitmode;
Reinitmode –[Reinit.Complete]-> Primarymode;

end PassivePrimaryBackup.impl;

Provides externally restart control

Defines who is active when

Defines restart logic

www.aadl.infowww.aadl.info 75© 2004 by Carnegie Mellon University

Modal Systems
• Operational modes
– Alternate task and communication configurations
– Reflect system operation

• Modal subsystems
– Internal mode control to model autonomous subsystems
– External mode control to model coordinated operational

modes
• Alternate system configurations
– Reachability of mode combinations

• Reduced analysis space
– Less conservative analysis results

• Management of consistent configuration
– Inconsistency identification through analysis
– Inconsistency repair through selective reconfiguration

www.aadl.infowww.aadl.info 76© 2004 by Carnegie Mellon University

Outline: An Introduction & Overview
• Overview of SAE AADL Standard
• Model-Based Architecture-Driven System Engineering
• AADL-Based Development Environment
• Case Studies
• AADL Language Concepts

– Components
– Component interaction & flows
– Faults & modes
– Large-scale development & extensions

• Open Source AADL Tool Environment
• Summary

www.aadl.infowww.aadl.info 77© 2004 by Carnegie Mellon University

Component Evolution
• Partially complete component type and implementation
• Multiple implementations for a component type
• Extension & refinement

– Component templates to be completed
– Variations and extensions in interface (component type)
– Variations and extensions in implementations

Example of Dual
Redundancy pattern

www.aadl.infowww.aadl.info 78© 2004 by Carnegie Mellon University

Large-Scale Development

• Component type and implementation declarations in
packages
– Name scope for component types
– Public and private package sections
– Grouping into manageable units
– Nested package naming
– Qualified naming to manage name conflicts

• Supports independent development of subsystems
• Supports large-scale system of system development

www.aadl.infowww.aadl.info 79© 2004 by Carnegie Mellon University

AADL Language Extensions
• New properties through property sets
• Sublanguage extension

– Annex subclauses expressed in an annex-specific
sublanguage

• Project-specific language extensions
• Language extensions as approved SAE AADL

standard annexes
• Examples

– Error Model
– ARINC 653
– Behavior
– Constraint sublanguage

www.aadl.infowww.aadl.info 80© 2004 by Carnegie Mellon University

Example Annex Extension
THREAD t

FEATURES
sem1 : DATA ACCESS semaphore;
sem2 : DATA ACCESS semaphore;

END t;

THREAD IMPLEMENTATION t.t1
PROPERTIES

Period => 13.96ms;
cotre::Priority => 1;
cotre::Phase => 0.0ms;
Dispatch_Protocol => Periodic;

ANNEX cotre.behavior {**
STATES

s0, s1, s2, s3, s4, s5, s6, s7, s8 : STATE;
s0 : INITIAL STATE;

TRANSITIONS
s0 -[]-> s1 { PERIODIC_WAIT };
s1 -[]-> s2 { COMPUTATION(1.9ms, 1.9ms) };
s2 -[sem1.wait ! (-1.0ms)]-> s3;
s3 -[]-> s4 { COMPUTATION(0.1ms, 0.1ms) };
s4 -[sem2.wait ! (-1.0ms)]-> s5;
s5 -[]-> s6 { COMPUTATION(2.5ms, 2.5ms) };
s6 -[sem2.release !]-> s7;
s7 -[]-> s8 { COMPUTATION(1.5ms, 1.5ms) };
s8 -[sem1.release !]-> s0;

**);
END t.t1;

COTRE thread
properties

COTRE behavioral annex

Courtesy of

www.aadl.infowww.aadl.info 81© 2004 by Carnegie Mellon University

System Safety Engineering
Capture the results of

• hazard analysis
• component failure modes & effects analysis

Specify and analyze
• fault trees
• Markov models
• partition isolation/event independence

Integration of system safety with architectural design
• enables cross-checking between models
• insures safety models and design architecture are
consistent

• reduces specification and verification effort

Supported by Error
Model Annex

www.aadl.infowww.aadl.info 82© 2004 by Carnegie Mellon University

Error Modeling Approach
Error model annex clauses declare

– Error states and transitions
– Fault events & occurrence rates
– Error propagation & occurrence rates
– Masking of subcomponent and propagation errors

Architecture model provides
– Dependency information
– Basis for isolation analysis

error_free

babblingfail_stopped

observed_faultdetected_fault

propagate
fail_stopped

propagate
babbling

www.aadl.infowww.aadl.info 83© 2004 by Carnegie Mellon University

Outline: An Introduction & Overview
• Overview of SAE AADL Standard
• Model-Based Architecture-Driven System Engineering
• AADL-Based Development Environment
• Case Studies
• AADL Language Concepts
• Open Source AADL Tool Environment
• UML Profile of AADL
• Summary

www.aadl.infowww.aadl.info 84© 2004 by Carnegie Mellon University

Open Source AADL Tool Environment
• Developed by the SEI
• No cost CPL license
• OSATE Release 0.3.0 based on Eclipse Release 3
• Parsing & semantic checking of approved AADL
• Text to XML & XML to text
• Syntax-sensitive text editor
• Syntax-Sensitive AADL Object Editor
• AADL property viewer
• AADL to MetaH translator
• Online help
• Model instantiation
• First analysis plug-ins

Processed 21000 line
AADL model

Next release Nov 2004
Graphical editor
Multi-file support

Analysis plug-in development

www.aadl.infowww.aadl.info 85© 2004 by Carnegie Mellon University

AADL Meta Model

• Defined in Eclipse Modeling Framework (EMF)
– Collection of packages with multiple graphical views
– Separate from, but close to UML profile of AADL

• XML as persistent storage
– XMI specification from Ecore meta model
– Generated XML schema

• In-core AADL model
– Generated methods for AADL model manipulation
– Edit history, deep copy, object editor, graphical editor
– Methods to support

• AADL extends hierarchy
• feature “inheritance”
• property value “inheritance”

www.aadl.infowww.aadl.info 86© 2004 by Carnegie Mellon University

OSATE
Textual AADL, Graphical AADL

XML/XMI AADL, AADL object model API
AADL extension support

EMF
XML/XMI, Metamodel
Change notification

Multi-file support

OSATE Plug-in Extensions

Eclipse
Platform independence

Extensible help
Task & Problem Mgt

Team support
Plug-in development

AADL Front-end
Text editor

Object editor
Graphical editor

Text<->XML
Semantics

OSATE
Extensions

Analysis template
Generation template
AADL Semantic API

Architecture Import
Simulink/Matlab model

Extraction via SVM

Architecture Export
MetaH

Architecture Analysis
Security level

Data stream miss rate
Latency

Architecture Consistency
Required connectivity

Model completeness profiles
Connectivity cycles

Architecture Transform
Conceptual architecture ->

Runtime architecture
Rate group optimization
Port group identification

Model Transformation
Timing analysis (RMA)

External Models
<See later>

www.aadl.infowww.aadl.info 87© 2004 by Carnegie Mellon University

Tool Plug-in Example
public Object caseConnection(Connection conn) {

if (conn instanceof DataAccessConnection || conn instanceof BusAccessConnection)
return DONE;

PropertyHolder scxt = (PropertyHolder) conn.getSrcContext();
PropertyHolder dcxt = (PropertyHolder) conn.getDstContext();
if (scxt == null || dcxt == null) return DONE;
if (scxt instanceof PortGroup)

scxt = conn.getContainingComponentImpl();
if (dcxt instanceof PortGroup)

dcxt = conn.getContainingComponentImpl();
IntegerValue spv = scxt.getSimplePropertyValue(“SEI","SecurityLevel");
IntegerValue dpv = dcxt.getSimplePropertyValue(“SEI","SecurityLevel");
if (spv == null || dpv == null) {

ErrorHandling.userError(conn,"Security level specification missing");
return DONE;

}
if (spv.getValue() > dpv.getValue())

ErrorHandling.userError(conn,"Security level violation");
return DONE;

}

www.aadl.infowww.aadl.info 88© 2004 by Carnegie Mellon University

Security Level Example
property set SEI is
SecurityLevel : aadlinteger

applies to (thread, thread group, process,
system);

end SEI;

data signal
end signal;

thread peter
features

pe: in event port;
pd: out data port signal;

properties
SEI::SecurityLevel => 2;

end peter;

thread implementation peter.default
end peter.default;

thread pierre
features

pd: in data port signal;
pe: out event port;

properties
SEI::SecurityLevel => 1;

end pierre;

thread implementation pierre.default
end pierre.default;

process sys
end sys;

process implementation sys.impl
subcomponents

T1: thread peter.default;
T2: thread pierre.default;

connections
data port T1.pd -> T2.pd;
event port T2.pe -> T1.pe;

end sys.impl;

www.aadl.infowww.aadl.info 89© 2004 by Carnegie Mellon University

OSATE and External Tools
Embry-Riddle

Reliability Analysis
System

Verification
Manager (CMU)
Simulink/Matlab,
Dymola models

Architecture
Import
SVM

Architecture
Export

MetaH, TTA

Architecture
Extraction

MetaH Toolset
(Honeywell)

Scheduling analysis
Reliability analysis
Isolation analysis
Runtime system

generation

Model Export
Filters

Timing model

TimeWiz Commercial Tool
Scheduling analysis

Execution trace analysis

TimeWeaver (CMU)
Distributed resource allocation

Multi-platform runtime system generation

Object Model
Interface

Network model

AADL Extensions
Error model

Concurrency behaviorConcurrency
Analysis

OMNET++
Network

simulation

Company
In-house tools

XML

www.aadl.infowww.aadl.info 90© 2004 by Carnegie Mellon University

OSATE Community Development

• www.aadl.info website
• OSATE Plug-in update site
• Bugzilla error reporting
• SEI-Hosted CVS Development Server
• Availability of Source Code (CPL)
• Plug-in contributions

– Syntax-sensitive text editor by York U.
– Graphical layout editor by USC
– AADL to MetaH translator by SEI
– Error modeling support by Embry-Riddle

www.aadl.infowww.aadl.info 91© 2004 by Carnegie Mellon University

Outline: An Introduction & Overview
• Overview of SAE AADL Standard
• Model-Based Architecture-Driven System Engineering
• AADL-Based Development Environment
• Case Studies
• AADL Language Concepts
• Open Source AADL Tool Environment
• UML Profile of AADL
• Summary

www.aadl.infowww.aadl.info 92© 2004 by Carnegie Mellon University

UML Profile of AADL
• The UML 1.4 and 2.0 profiles of AADL
• Example
<placeholder for Ed Colbert material>

www.aadl.infowww.aadl.info 93© 2004 by Carnegie Mellon University

Outline: An Introduction & Overview
• Overview of SAE AADL Standard
• Model-Based Architecture-Driven System Engineering
• AADL-Based Development Environment
• Case Studies
• AADL Language Concepts
• Open Source AADL Tool Environment
• UML Profile of AADL
• Summary

www.aadl.infowww.aadl.info 94© 2004 by Carnegie Mellon University

Summary of AADL Capabilities
• AADL abstractions separate application architecture

concerns from runtime architecture concerns
• AADL incorporates a run-time architecture perspective

through application system and execution platform
• AADL is effective for specialized views of embedded,

real-time, high-dependability, software-intensive
application systems

• AADL supports predictable system integration and
deployment through model-based system engineering

• AADL component semantics facilitate the dialogue
between application and software experts

www.aadl.infowww.aadl.info 95© 2004 by Carnegie Mellon University

Value of AADL-Based Development
• Early Prediction and Verification (Tool-Supported)

– performance
– reliability
– system safety

• Component Compliance Verification (Tool-Supported)
– functional interface
– resource requirements
– system safety

• System Integration and Verification (Tool-Supported)
– workstation testing
– system performance
– system safety verification

www.aadl.infowww.aadl.info 96© 2004 by Carnegie Mellon University

SAE AADL: An Enabler for Predictable
Embedded Systems Engineering

• Industry standard architecture modeling notation & model
interchange format facilitates
– Interchange of architecture models between contractors &

subcontractors
– Integration of architecture models for system of systems analysis
– Common architecture model for non-functional system property

analysis from different perspectives
– Interoperability of modeling, analysis, and generation tools

• Open Source AADL Tool Environment offers
– Low cost entrypoint to the use of SAE AADL
– Platform for in-house prototyping of project specific architecture

analysis
– Platform for architecture research with access to industrial models &

industry exposure to research results

www.aadl.infowww.aadl.info 97© 2004 by Carnegie Mellon University

Benefits
• Model-based system engineering benefits

• Benefits of AADL as SAE standard

Predictable runtime characteristics
addressed early and throughout life

cycle greatly reduces integration and
maintenance effort

AADL as standard provides
confidence in language stability, broad
adoption, and strong tool support

www.aadl.infowww.aadl.info 98© 2004 by Carnegie Mellon University

The End

• For information go to www.aadl.info

