Carnegie Mellon
Gofty Enainesring Institut
ing

The SAE AADL Standard -
An Architecture Analysis & Design
Language for Embedded Real-Time

Systems
Peter Feiler Ed Colbert
Technical lead, editor UML Profile of AADL
Software Engineering Institute Absolute Software, USC
phf@sei.cmu.edu colbert@abssw.com
412-268-7790 760-929-0612

Carnegie Mellon
Software Engineering Institute

Tutorial Objectives

Provide an overview of the SAE AADL Standard

Introduce architecture-based development concepts

Provide a summary of AADL notation capabilities

Give an overview of AADL tools

www.aadl.info

HE
=

modeler.org.cn

L

e Melbin
Software Engineering Institute

Outline: An Introduction & Overview

‘ Overview of SAE AADL Standard
Model-Based Architecture-Driven System Engineering

AADL-Based Development Environment
Case Studies

AADL Language Concepts

Open Source AADL Tool Environment
UML Profile of AADL

Summary

www.aadl.info

L

e Melbin
Software Engineering Institute

SAE Architecture Analysis & Design
Language (AADL)

Specification of

— Real-time

Embedded

Fault-tolerant

Securely partitioned
Dynamically configurable

Software task and communication architectures

Bound to
— Distributed multiple processor hardware architectures

Fields of application
— Auvionics, Automotive, Aerospace, Autonomous systems, ...

www.aadl.info

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

An SAE Standard

Based on 15 Years of DARPA funded technologies
Core language standard has been approved

Sponsored by
— SAE International

— Avionics Systems Division (ASD)

— Embedded Systems (AS2)

— AADL Subcommittee (AS-2C)

Contact

— Bruce Lewis AS-2C chair, bruce.a.lewis@us.army.mil

— http://www.aadl.info
— For Information email to info@aadl.info

www.aadl.info

Carnegie Mellon
Software Engineering Institute

SAE AS-2C AADL Subcommittee

* Bruce Lewis (US Army AMRDEC): Chair

» Peter Feiler (SEI): technical lead, author & editor
» Steve Vestal (Honeywell): co-author

» Ed Colbert (USC): UML Profile of AADL

» Joyce Tokar (Pyrrhus Software): Ada & C Annex
Other Voting Members

» Boeing, Rockwell, Honeywell, Lockheed Martin,
Raytheon, Smith Industries, General Dynamics,
Airbus, Axlog, European Space Agency, TNI,
Dassault, EADS, High Integrity Solutions

Coordination with
* NATO Aviation, NATO Plug and Play, French

Government COTRE, SAE AS-1 Weapons Plug and
Play, OMG UML & SysML

www.aadl.info

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

Potential Users

New System Engineering Approach
incorporates AADL
Airbus Modeling of Satellite

Systems, Architecture
European Space Agency Verification - ASSERT

Rockwell Collins Modeling of Avionics
Lockheed Martin ’LComputer System

F Embedded System ‘
Engineering & AADL

Smith Industries

Raytheon
. Apply AADL for systems
Boeing FCS %@graﬁon modeling & analysis

Common Missile
System Plug and Play

NATO/SAE AS1 Weapon
System Integration

www.aadl.info

7

Carnegie Mellon
Software Engineering Institute

AADL Status

Requirements document SAE ARD 5296
— Input from aerospace industry

— Balloted and approved in 2000

SAE AADL document SAE AS 5506

— Core language approved by SAE Sept 2004

In review to be balloted Fall 2004
Graphical AADL notation

UML profile of AADL for UML1.4 and UML 2.0
XMI domain model, XML schema

Ada and C Annex

In development
— Error Model Annex
— ARINC 653 Annex

www.aadl.info

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

MetaH: Proof of Concepts for AADL

1991 DARPA DSSA program begins

1992 Partitioned PFP target (Tartan MAR/i960MC)

1994 Multi-processor target (VME i960MC)

1995 Slack stealing scheduler

1998 Portable Ada 95 and POSIX middleware configurations
1998 Extensibility through MetaH-ACME Mapping

1998 Reliability modeling extension

1999 Hybrid automata verification of core middleware modules

Numerous evaluation and demonstration projects, e.g.
Missile G&C reference architecture, demos, others (AMCOM SED)
Hybrid automata formal verification (AFOSR, Honeywell)

Missile defense (Boeing)

Fighter guidance SW fault tolerance (DARPA, CMU, Lockheed-Martin)
Incremental Upgrade of Legacy Systems (AFRL, Boeing, Honeywell)
Comanche study (AMCOM, Comanche PO, Boeing, Honeywell)
Tactical Mobile Robotics (DARPA, Honeywell, Georgia Tech)
Advanced Intercept Technology CWE (BMDO, MaxTech)

Adaptive Computer Systems (DARPA, Honeywell)

Avionics System Performance Management (AFRL, Honeywell)

Ada Software Integrated Development/Verification (AFRL, Honeywell)
FMS reference architecture (Honeywell)

JSF vehicle control (Honeywell)

IFMU reengineering (Honeywell)

www.aadl.info

Carnegie Mellon
Software Engineering Institute

AADL in Context

F DARPA Funded
Research ADLs Research since 1990

e MetaH

— Real-time, modal, system family
— Analysis & generation

— RMA based schedulino AADL

 Rapide, Wright, .. m Extensible
— Behavioral validation Real-time

« ADL Interchange Dependable
— ACME

Industrial Strehgth

« UML 2.0, UML-RT

HOOD/STOOD

SO
Airbus & ESA

www.aadl.info

HE
=

modeler.org.cn

- Uarnegie Mellon
Software Engineering Institute

AADL/UML Relationship

System Engineering

To Be submitted to |
.. OMG for Adoption | :
: Embedded

:Software Syste
Engineering

AADL

Core AADL 1\ 0]
UML Profile UML 1.4
Detailed design £\
Dependability

AADL Annexes
UML Working Groups

UML-RT
Performance
Timeliness

www.aadl.info E

- Uarnegie Mellon
Software Engineering Institute

Outline: An Introduction & Overview

» Overview of SAE AADL Standard
‘ Model-Based Architecture-Driven System Engineering
» AADL-Based Development Environment
» Case Studies
* AADL Language Concepts
e Open Source AADL Tool Environment
e Summary

www.aadl.info 2

HE
=

modeler.org.cn

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

Typical Software Development Process

| Manual, Paper Intensive, Error Prone, Resistant to Change |

<o f
b

Requirements Q ;
Analysis Design Implementation Integration
e High Development & High Risk
Maintenance Cost System Integration

www.aadl.info

Carnegie Mellon
Software Engineering Institute

Embedded Systems Development Concerns

* Incomplete capture of specification and design

« Little insight into non-functional system properties until
system integration & test

— Performance (e.g., Throughput, Quality of Service)

— Safety - Reliability
— Time Critical - Security
— Schedulability - Fault Tolerance

» System Integration - high risk

» Evolvability — very expensive

» Life Cycle Support — very expensive

» Leads to rapidly outdated components

www.aadl.info “

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

Model-Based System Engineering

| Predictive Analysis Early In & Throughout Life Cycle |
[3

Ne
+

System
Integration

Architecture Modeling & Analysis

Requirements
Analysis

Rapid Integration
Predictable Operation
Upgradeability
Reduced Cost

Architecture-Driven Development

www.aadl.info

Carnegie Mellon
Software Engineering Institute

AADL-Based System Engineering

System Integration

» Schedulability *Runtime System Generation
« Performance Software « Application Composition

+ Reliability System « System Configuration

e Fault Tolerance Engineer
* Dynamic Configurability

System Analysis

Predictive
System

hi
Alr\jl:o:jtglti:;l;re SAE AADL Engineering

Abstract, but Reduced

. Precise Development &
Target Operational Cost
Recognjtion lication Executi
Guidance Platform

& Co

| eps | DB | HTTPS |ada Runtimd

Fusion

& Signal

Processing | Devices [Memory| Bus | Processor |

www.aadl.info 1

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

Focus Of SAE AADL

Component View
— Model of system composition & hierarchy
— Well-defined component interfaces

Concurrency & Interaction View

— Time ordering of data, messages, and events
— Dynamic operational behavior

— Explicit interaction paths & protocols

Execution view
— Execution platform as resources
— Binding of application software
— Specification & analysis of runtime properties
« timeliness, throughput, reliability, graceful degradation, ...

www.aadl.info

Carnegie Mellon
Software Engineering Institute

What Is Involved In Using The AADL?

» Specify software & hardware system architectures

» Specify component interfaces and implementation
properties

* Analyze system timing, reliability, partition isolation
» Tool-supported system integration

» Verify source code compliance & middleware
behavior

Model and analyze early and
throughout product life cycle

www.aadl.info

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

Evolutionary Development

» A control systems simulation perspective
* A model-based architecture perspective
* An integrated perspective

www.aadl.info »

Carnegie Mellon
Software Engineering Institute

A Control Engineer Perspective

Continuous
feedback
in a controller

([l /7

J L S\S
one“‘ N\a\
D
Com with Text_IO;

package Main is

[l
[“Matiab | Aopiicz S| ™
e

with Text_IO;
package Main is

begin

type real is digits 14;

type real is digits 14; | | Ype flag is boolean;

type flag is boolean;

x:real := 0.0;
ready ; flag := TRUE;

x:real := 0.0;
ready : flag := TRUE;

Continuous feedback for
a control engineer

www.aadl.info ®

- Carnegie Mellon
Software Engineering Institute
A Software System Engineer Perspective
ot s fokage Han s Application
begin gin Components
Continuous feedback for e et e 14 D s ool
software system engineer x:real = 00; real = 0.5
ready : flag := TRUE; [3dy : flag := TRUE;

%Execution
Platform

-, |
=> I

package Dispatcher is

AADL Toolsi

AADL Runtime

ApLi=B.p2
Case 10ms:

dispatch(a);
dispatch(b);

Runtime
Data
R1R2R3 R4
2429 12125 6 2 R3R4
2334 88 TLT2T3T4
2423234 1 12125 6
12125 6 2334 88

23348 8 | 2423234
24232 34

I 4

AADL-based
Architecture Model

www.aadl.info 2

- Carnegie Mellon
Software Engineering Institute

A Combined Perspective

%~

Tune p arameters

Matlab

with Text_IO;

PD/lcat,On package Main is

Continuous |nteract|on pean
type real is digits 14;
between type flag s boolean;
Control engineer i real =

[l

with Text_IO;
package Main is

begin

type real is digits 14;
type flag is boolean;

x:real := 0.0;
ready ; flag := TRUE;

ready : vlag " TRUE;
& system englneer

package Dlspalcher is

|AADL Tools AADL Runtime

Apl:=B.p2
Case 10ms:
dispatch(a);
dispatch(b);

Runtime
Data
R1R2 R3 R4
2424 12125 6 2 R3R4
2334 88 TLT2T3T4
2423234 12125 6
12125 6 | 233488

23348 8 | 2423234
24232 34

I 4

www.aadl.info 2

HE
=

modeler.org.cn

Mwljﬁ"r"’ﬁtioning of Responsibilities:
The Application Engineer

Application design perspective
Data content properties
Stream completeness characteristics
Phase delay & timeliness

AADL Executive code generated from AADL
Runtime Executive Real-time OS API

Application implementation perspective
Ports accessible as variables
Port variable values not overwritten during execution
Control flow via events & messages
Initialize, activate, deactivate, compute, recover, finalize

entrypoints
www.aadl.info

Carnegie Mellon

- TTTPErtitioning of Responsibilities:

The Software System Engineer

Task & Communication Perspective
Task dispatch & deadlines
Timely & deterministic communication
Dynamic reconfiguration

JAVAYDI N Executive code generated from AADL
Runtime System Real-time OS API

Runtime System perspective
Rate groups, priorities & dispatch order
Coordinated dispatch & communication

Double buffering where necessary

Shared variables where appropriate
www.aadl.info

HE
s

modeler.org.cn

S CarnegieMellon
—— Software Engineering Institute

A Partitioned Portable Architecture

Application Application Application Application
Software Software Software Software
Component Component Component Component

AADL Runtime System

Real-Time Operating System

Embedded Hardware Target

www.aadl.info

Strong Partitioning Interoperability/Portability
e Timing Protection * Tailored Runtime Executive
* OS Call Restrictions » Standard RTOS API
 Memory Protection » Application Components

S CarnegieMellon
—— Software Engineering Institute

Predictable System Integration

* Requirements, predicted, and actual properties

» Application components designed against functional
and non-functional properties

» Application code separated from task dispatch &
communication code

» Consistency between task & communication model
and implementation through generation

» Feedback into model parameters: refinement of
estimated performance values

www.aadl.info

HE
s

modeler.org.cn

S CarnegieMellon
Software Engineering Institute

Outline: An Introduction & Overview

» Overview of SAE AADL Standard

* Model-Based Architecture-Driven System Engineering
‘ AADL-Based Development Environment

» Case Studies

 AADL Language Concepts

» Open Source AADL Tool Environment

e Summary

www.aadl.info

S CarnegieMellon
Software Engineering Institute

Application Development Environment

rget hardwal
Specifications

enginee
of legacy
orntware

Application ADL-Base

Development
Tools are & Syste
ation Toc

raditional

I | evelopmen

Complete, Validated
Executable System

www.aadl.info

HE
s

modeler.org.cn

S CarnegieMellon
Software Engineering Institute

An XML-Based AADL Tool Strategy

Textual
AADL

Execution
Platform Binding

Commercial
Tool like
TimeWiz

Filter to Markov
Analysis

www.aadl.info

S CarnegieMellon
Software Engineering Institute

Two-Tier Tool Strategy

» Open Source AADL Tool Environment (OSATE)
— Developed by SEI

Low entry cost solution (no cost GPL)

Multi-platform based on Eclipse

Prototyping environment for project-specific analysis

Architecture research platform

» Commercial Tool Support
— UML tool environment extension based on UML profile
— Extension to existing modeling environment with AADL
export/import
— Analysis tools interfacing via XML or XML to native filter
— Runtime system generation tools

www.aadl.info

HE
s

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

Open Source AADL Tool Environment

OSATE is

— Developed by the Software Engineering Institute

— Auvailable at under a no cost General Purpose License (GPL)
— Implemented on top of Eclipse Release 3 (www.eclipse.org)
— Generated from an AADL meta model

— Atextual & graphical AADL front-end with semantic &
XML/XMI support

— Extensible through architecture analysis & generation plug-ins
OSATE offers
— Low cost entrypoint to the use of SAE AADL

— Platform for in-house prototyping of project specific
architecture analysis

— Platform for architecture research with access to industrial
models & industry exposure to research results

www.aadl.info 8

Carnegie Mellon
Software Engineering Institute

Potential Tool Support Areas

Architecture extraction/import from existing
representations

— UML designs, Simulink models, application code
Requirements tracing to the AADL design
Non-functional properties analysis

— Scheduling, Real-time Simulation, Throughput, Latency,
Concurrency, Reliability, Security, Safety, ...

AADL Architecture consistency analysis
— High/low risk patterns and properties

AADL Design Risk Assessment

AADL Architectural Design Optimizer and Quality
Metrics

Auto-document Generation
Runtime system generation & optimization

www.aadl.info 2

HE
=

modeler.org.cn

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

Outline: An Introduction & Overview

» Overview of SAE AADL Standard
* Model-Based Architecture-Driven System Engineering
* AADL-Based Development Environment
‘ Case Studies
 AADL Language Concepts
» Open Source AADL Tool Environment
* Summary

www.aadl.info

Carnegie Mellon
Software Engineering Institute

Two Case Studies

» Pattern-based analysis of systemic issues
— Modernized avionics system architecture
— Change in real-time architecture concepts
* Full-scale analysis & integration
— Port of missile guidance system
— Tool-supported analysis & generation

www.aadl.info

Carnegie Mellon
Software Engineering Institute

AADL-Based Pattern Analysis

SAE AADL employs

— Components with precisely defined execution semantics
— Explicit component interactions

— Separation of concerns

Pattern-based architecture analysis approach
Uses design patterns in analysis

Identifies systemic problems early

Enables the right choices with confidence

Provides analysis-based decisions

www.aadl.info

Carnegie Mellon
Software Engineering Institute

An Avionics System Case Study

* Migration from static timeline to preemptive scheduling
— ldentified issues with shared variable communication
— Migration potential from polling tasks to event-driven tasks
» Flexibility, predictability & efficiency of port-based
communication
— Support for deterministic transfer & optimized buffers
» Effectiveness of connection & flow semantics
— Bridge to control engineers
— Insulate from partition scheduling decisions
— Support end-to-end latency analysis
Analyzable fault-tolerant redundancy patterns
— Orthogonal architecture view without model clutter

www.aadl.info

HE
=

modeler.org.cn

From other : :
Partitions Navigation
Sensor
Processing
Fm—————————

Carnegie Mellon
Software Engineering Institute

A Cyclic Executive Implementation

Periodic I/0

Switch clock mod
Hyperperiod
Case 20Hz:

call P10
call NSP
call GP
Case 2*20Hz: -- 10Hz
call PIO I
call NSP 1
call IN 1
call GP
Case 3*20Hz: I
1
1
I

Case 4*20Hz: -- 5Hz

>

To other
Partitions

A

Shared
data
area

uidance
Processing \
ght PI
Processing
(o)

Aircraft
Performance
Calculation

Cyclic callout
implementation

www.aadl.info

Carnegie Mellon
Software Engineering Institute

A Naive Thread-based Design

Corz)
= >

- To other
E;?miztnser Navigation Partitions
i Sensor A
| Processing | Shared
S data
7 Integrated area
/ Navigation / /
= o ” — . lI Guidance
otential non-deterministic { Processing
communication dueto | f... T N
preemption / Flight Plan
/ Processing /
Potential priority inversion due to .@ ,,,,,,,,,,,,,, (>
| priority assignment — Aircraft
{ Performance
Calculation

Tasks must complete within frame
=> cyclic executive behavior

www.aadl.info

_Decreasing_Priority. .. ________

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

Nav signal & Navigation ! o
data Sensor Nav |
| . serfsor artitions
! Processing ;
From Lo

Partition

Flight Manager in AADL

************** e

I

St Guidance
N » Navigation P flata - -
d:t\;sensori 7777777777777777777 ; Processing ; |Guidance

_} Processing ” {pdata

! "””: 777777777777 —-Performance
i Aircraft @_%_ data
Navdaja g performance |

Fuel Flow \ Calculation 4

www.aadl.info

Carnegie Mellon
Software Engineering Institute

MetaH Case Study at AMCOM

* Reengineered Missile Application

Missile on-board software and 6DOF environment simulation
originally in Jovial

Ported to Ada83, executing on dual i80960MC, Tartan Ada,
VME Boards

Built to Generic Missile Reference Architecture

Specified in MetaH, 12 to 16 concurrent processes

Timing analysis early in reengineering effort

Runtime executive generated by MetaH toolset

MetaH reduced total re-engineering cost 40% on first project
it was used on. Missile prime estimated savings at 66%.

www.aadl.info

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

MetaH Case Study at AMCOM - 2

* Missile Application ported to a new execution
environment
— Multiple ports to single and dual processor implementations
— New processors (Pentium and PowerPC), compilers, O/S

— First time executable, flew correctly on each target
environment

— Execution platform description and binding specification in
MetaH model

— Port of runtime executive virtual machine to new processor &
o/s

— Ports took a few weeks rather than 10 months

www.aadl.info “

SINOH Uep

Carnegie Mellon
Software Engineering Institute

AMCOM Effort Saved Using MetaH

Total project savings 50%o, re-target savings 90%

8000 —
7000 Retargeting to new

execution platform

Traditional
2000 Approach

MetaH

Current
T

i i Trans- I ! etal
Reengineering & o Jest . . T——) Ve
MetaH model analysis Missile pepug DPPU9 Retarget

www.aadl.info @

HE
=

modeler.org.cn

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

Outline: An Introduction & Overview

Overview of SAE AADL Standard

Model-Based Architecture-Driven System Engineering
AADL-Based Development Environment

Case Studies

‘AADL Language Concepts

Components

Component interaction & flows

Faults & modes

Large-scale development & extensions

* Open Source AADL Tool Environment

e Summary

www.aadl.info *

Carnegie Mellon
Software Engineering Institute

AADL: The Language

Components with precise semantics
— Thread, thread group, process, system, processor, device, memory,
bus, data, subprogram

Completely defined interfaces & interactions
— Data & event flow, synchronous call/return, shared access
— End-to-End flow specifications

Real-time Task Scheduling
— Supports different scheduling protocols incl. GRMA, EDF
— Defines scheduling properties and execution semantics

Modal, configurable systems
— Modes to model transition between statically known states &
configurations

Component evolution & large scale development support
AADL language extensibility

www.aadl.info “

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

Component-Based Architecture

* Specifies a well-formed interface

« All external interaction points defined as features
» Multiple implementations per component type

* Properties to specify component characteristics
» Components organized into system hierarchy

» Component interaction declarations must follow system
hierarchy

www.aadl.info

Carnegie Mellon
Software Engineering Institute

System Type

system GPS
features

speed_data: in data port netric_speed

{sei::niss rate => 0.001 nps;};

geo_db: requires data access real _tinme_geoDB

s_control __data: out data port state control
flows

speed_control: flow path

speed data -> s_control data

properties sei::redundancy => 2 X;
end GPS;

www.aadl.info

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

System Implementation

system implementation GPS. secure
subcomponents
decoder: system PGP_decoder. basic;
encoder: system PGP_encoder. basic;
recei ver: system GPS_receiver. basic;
connections
cl: data port speed_data -> decoder.in;
c2: data port decoder.out -> receiver.in
c3: data port receiver.out -> encoder.in;
c4: data port encoder.out -> s_control _data
flows
speed_control: flow path speed_data -> cl -> decoder.fsl
-> c2 ->receiver.fsl -> c3 -> decoder.fsl
->c4 -> s_control _data

modes none;
éggmggaroperties sei ::redundancy_schene => Prinmary_Backup;
==lend GPS

)

www.aadl.info o

Carnegie Mellon
Software Engineering Institute

Application Components

» System: hierarchical organization of components

» Process: protected virtual address space

process

» Thread group: organization of threads in processes
b}

* Thread: a schedulable unit of concurrent execution
‘/' Thread '/’

» Data: potentially sharable data

g []
——

lA » Subprogram: Callable unit of sequential code

I Subprogram

www.aadl.info

Carnegie Mellon
Software Engineering Institute

Thread Dispatch Protocols

Gm Periodic thread

— represents periodic dispatch of threads with typically hard
deadlines.

\, Aperiodic thread

— represents event-triggered dispatch of threads with typically
hard deadlines.

@? Sporadic thread

— represents dispatching of threads with minimum dispatch
separation and typically hard deadlines.

Background thread

— represents threads that are dispatched once and execute until

completion. _
Additional protocols
can be introduced
www.aadl.info °
Carnegie Mellon
Software Engineering Institute

Thread Execution Semantics

o .
Nomlnal & recovery thread abort ‘ thread unrecoverable
thread error detected
1 performing threa FETET TS TEzE Dl
+ Fault handling o
H complete intialization thread unrecave lable
* Resource locking st e Do ey deteptsd
+Recaver_Deading £ Hyper(ode) assat i (Compute/activateDeactivate)_Dedding
. . +Recover_Dedine
« Mode switching .
v complete deactivation
PR asserl ts Deactivate_Deadine
* Initialization & finalization suspended) ihecover e
awaiting mode
stop {pro cess)
sinE(L':utessnr) thread enter(Mode)
dispatch activation
1=0

performing

t+n0
g:g:(t:r ﬂc:;?ﬂr) \ Grmmmglhread
Bt ﬂ\-@ﬁ p— L deactivation

activation
thread
finalize
complete activation
r assart i 2 Activate_Deadling
stopiprocess) +Recover_Deadine
stop(processor)
stop(system)
assert (i Finalize_Dealing thread exit{Mode)

suspended
awaiting dispatch
Wait_For_Dispatch

t=0

? Enabled()
dispatch computation
te10

abort{process) performing thread
(p) |

abort(system) ’

complete computation
assat £ Compute_Deadine
+Recaver_Deading

www.aadl.info »

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

Some Thread Properties

Di spat ch_Protocol => Peri odic;

Period => 100 ns: gDispatch executionj
Conput e_Deadl i ne => value(Peri od); properties

Conput e_Execution_Ti me => 20 ns;
Initialize_Deadline => 10 ns;
Initialize_Execution_Time => 1 nms;

Conput e_Entrypoi nt => “speed_control ”;
Initialize Entrypoint => “speed_contrgl _init”;
Sour ce_Text => “waypoi nt.java’;
Sour ce_Code_Si ze => 12 KB;
Source_Data_Size => 5 KB;

Code function to be
executed on dispatch

File containing the
application code

www.aadl.info 5

Carnegie Mellon
Software Engineering Institute

Data Component

Data component type represents data type

— Used for typing ports

— Optional modeling of operations

Data component implementation

— Substructure modeling

Data component

— Sharable between threads through data access connections
— Access properties

— Concurrency control protocol property

www.aadl.info 52

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

Execution Platform Components

* Processor — Provides thread scheduling and execution
services

[Processor_J)
Memory — provides storage for data and source code

Bus — provides physical connectivity between
execution platform components

Device — interface to external environment

i

Device

www.aadl.info 5

Carnegie Mellon
Software Engineering Institute

Perspectives on Devices

Hardware Engineer o
o . Application
— Device is part of physical system

4+ Physical Hardware ®
[Processor |} [Device |

ystem]

Device, “’]_'
Driver

Application developer

— Device functionality is part of the
application software A

Lo
-

Control Engineer

— Device represenfs;th control system:\it ,29 Environment
being controlled [Sensor|
AP Jactuator]

www.aadl.info 5

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

Execution Platform Bindings

4 183 Processpr, memory, and
connection bindings

Flight Mgr 4 Weapons
Mgr

[==- A4 MFD Pilot
.

===

| pep—
Warnings

o
o Annunciations

'+ MFD Copilot

Co-location
constraints
in support of
redundant
systems

.

Mission Display Display
Processor Processor Processor

m | Pilot Display CoPilot Display

www.aadl.info

Carnegie Mellon
Software Engineering Institute

Outline: An Introduction & Overview

» Overview of SAE AADL Standard

* Model-Based Architecture-Driven System Engineering
» AADL-Based Development Environment

» Case Studies

* AADL Language Concepts
— Components
Component interaction & flows
— Faults & modes
— Large-scale development & extensions

» Open Source AADL Tool Environment
* Summary

www.aadl.info

HE
=

modeler.org.cn

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

Ports & Connections

Ports: directional transfer of data &

in
control Data port
out

Data port: state, sampled data in out
streams

: E
Event port: Queued, thread dispatch & > Event port

mode switch trigger
a9 » Event data port

Event data port: queued messages
‘0 Port group

Port group: aggregation of ports into
single connection point H

Immediate & delayed data connection: Immediate connection
= S .
Sae. deterministic data transfer semantics —H— Delayed data
connection

www.aadl.info

Carnegie Mellon
Software Engineering Institute

Deterministic Communication Issues

Fixed-priority preemptive scheduling
— Better resource utilization

Efficient data stream communiation

» Shared variable communication within a processor
— Preemptive scheduling introduces non-deterministic read-write
order
» Single buffer send/receive communication within and
across processors
— Preemption and concurrency of threads result in non-
deterministic application level send/receive call ordering
The consequence
— Non-deterministic variation in latency & phase delay
— Appearance of noisy data to controllers

www.aadl.info

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

Deterministic Communication in AADL

» Data ports represent unqueued communication of data
streams

* Immediate & delayed connection timing semantics
assure deterministic data stream transfer

* Immediate connections constrain thread execution
order

» Delayed connections increase concurrency

* Implementation considerations
— Mutual exclusive port variable access
— Double buffering as appropriate

— AADL runtime system responsible for dispatch &
communication

www.aadl.info

Carnegie Mellon
Software Engineering Institute

Sampling & Delayed Connections

/

/
l control
i '1
/
/

read_data

Read every value twice

control
>

!

l T Timen

.10 T Tis2,2017 \ imetine
Preemption & concurrency Old data value

. . Ti+l,10Hz
is possible

AADL assures
» Deterministic sampling & phase delay
* Requires double buffering as necessary

www.aadl.info

Carnegie Mellon
Software Engineering Institute

Flows in AADL

Flow Specification
F1: flow path ptl -> pt2
F2: flow path ptl -> pt3

System S1

pt1 [4% System implementation S1.impl

Connection

flow path F5
Process P2 P

C3
flow path F7
Process PT

End-To-End Flow Declaration
SenseControlActuate: end to end flow Sensor.FS1 -> C1 ->
Controller.F1 -> C2 -> Actuator.FS1

flow path F1 flow sink FS1

Controller ”7'* Actuator

www.aadl.info

pt2

Flow Implementation
F1: flow path ptl -> C1 -> P2.F5
->C3->P1.F7->C5->pt2

pt3

flow source FS1

4% Sensor

Carnegie Mellon
Software Engineering Institute

Avionics Subsystem Architecture

Observation: No direct
connection between
flight director and

page content manager

TCockpitl
| Display §

Warning Annunciation
Manager

Situation Weapons Comm.
Awareness Magager Manager
. - A

Opportunity for
connectivity
analysis

1553 Access GPS

www.aadl.info 82

i

1=

modeler.org.cn

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

Flight Director Command Flow

Request for new page

WSmiy
anager

Pight i
Flight

www.aadl.info

Carnegie Mellon
Software Engineering Institute

Response Time Analysis

Worst-case scenario
— Period delay per partition communication
« DM sampling latency (max. = partition period)
 Six periods of partition communication latency
* DM execution latency (max. = partition period)
« 0.4 seconds worst case response time
« 0.3 seconds best case response time
Single processor static timeline
— One direction immediate, opposite direction phase delayed
— Reduces partition communication latency to three periods
Multiple processor synchronous system
— Take into consideration bus/network latency

Multiple processor asynchronous system
— Asynchronous sampling with max. sampling latency = period

www.aadl.info

Carnegie Mellon
Software Engineering Institute

Data Stream Latency Analysis

* Flow specifications in AADL

—Properties on flows: expected & actual end-to-end latency
—Properties on ports: expected incoming & end latency
» End-to-end latency contributors

—Delayed connections result in sampling latency

—Immediate periodic & aperiodic sequences result in
cumulative execution time latency

* Phase delay shift & oscillation/gDotential hazardj

—Noticeable at flow merge points
—Variation interpreted as noisy signal to controller

—Analyzable in AADL °
Latency calculation &
jitter accumulation

www.aadl.info

Carnegie Mellon
Software Engineering Institute

Insights into Flow Characteristics

» Miss rate of data stream
—Accommodates incomplete sensor readings
— Allows for controlled deadline misses

* State vs. state delta communication
—Data reduction technique
—Events as state transitions
—Requirement for guaranteed delivery

» Data accuracy
—Reading accuracy
— Computational error accumulation

* Acknowledgement semantics in terms of flows

www.aadl.info

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

End-To-End Response

C d Aggregated
Acknowledged ommanaer - B
Delivery
,\
Plan
BC Missio
Task order EXPBHSIOn
C
Battle Cotiman

Plan
stribution

Correlated
Observation

Reported
Observation

Observed
Result

Observations
[Expand HAcknowIedge

|Ssue |SSUE

WF MisgdOn WF Mission
Task gfder A order B

//

Flow failures
= Guaranteed delivery
8; Completion/Exception reporting

Independent observation Released

www.aadl.info 5

Carnegie Mellon
Software Engineering Institute

Outline: An Introduction & Overview

» Overview of SAE AADL Standard

* Model-Based Architecture-Driven System Engineering
» AADL-Based Development Environment

» Case Studies

* AADL Language Concepts
— Components
— Component interaction & flows
Faults & modes
— Large-scale development & extensions

» Open Source AADL Tool Environment
e Summary

www.aadl.info

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

Faults and Modes

* AADL provides a fault handling framework with
precisely defined actions

* AADL supports runtime changes to task &
communication configurations

» AADL defines timing semantics for task coordination
on mode switching

» AADL supports specification of mode transition actions

» System initialization & termination are explicitly
modeled

www.aadl.info 5

Carnegie Mellon
Software Engineering Institute

Fault Management

Fault containment

— Process as a runtime protected address space
Fault recovery

— Within application code & thread local

— Error propagation

Propagated error management

— Propagation through event connections

— Trigger reconfiguration through mode switching

— Monitoring & decision making through health monitor

Event queue processing by
aperiodic & periodic threads

www.aadl.info

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

Primary/Backup Configurations

Passive Backup

Hot Standby

Continuous
State Exchange

Voted Output

Css1

www.aadl.info

Carnegie Mellon
Software Engineering Institute

Primary Backup Synchronization

» External and internal mode control
* Errors reported as events
» Supports reasoning about Primary/Backup logic

° Init/restart
Primary (W)

v WAM

Primaryok

Ly

Observer /
4

—

www.aadl.info

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

Dual Redundancy Pattern

system Pri maryBackupPattern

features :
i nsi gnal : data port; Defines a dual
out si gnal : data port; redundant pattern
end PrimaryBackupPattern;

system implementation PrimaryBackupPattern.inpl
subcomponents
Primary: system sys;
Backup: system sys;
connections
inPrimary: data port insignal -> Primary.insignal
i nBackup: data port insignal -> Backup.insignal
outPrimary: data port Primary.outsignal -> outsignal
out Backup: data port Backup. outsignal -> outsignal
modes
Primarynode: initial mode
Backupnode: mode;
Rei ni t nnde: mode;
Backupnode —[restart]-> Reinitnopde
Rei ni t nrode —[Pri mary. Conpl ete] -> Pri marynode;

end PrimaryBackupPattern.inpl
www.aadl.info

Carnegie Mellon
Software Engineering Institute

Refined Dual Redundancy Pattern

system Passi vePri maryBackup extends Pri maryBackupPattern

features
restart: in event port; Provides externally restart control
end Passi vePri mar yBackup

system implementation PassivePri maryBackup.inpl extends

PrimaryBackupPattern. i mpl Defines who is active when
subcomponents

Primary: refined to system in modes (Prinmarynode);
Backup: refined to system in modes (Backupnode);
Rei nit: system rel oadsys in modes (Reinitnode);
connections
inPrimary: refined to data port in modes (Prinarynode)
i nBackup: refined to data port in modes (Backupnode);
outPrimary: refined to data port in modes (Pri marynode)
out Backup: refined to data port in modes (Backupnode)
modes
Rei ni t node: mode; - -
Backupnode —[restart]-> Reinitnode; [j@éﬂnesrestanlogii]
Rei ni t nnde —[Reinit. Conplete]-> Primarynode;
end Passi vePri maryBackup. i npl ;
www.aadl.info

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

Modal Systems

 Operational modes

—Alternate task and communication configurations
—Reflect system operation

* Modal subsystems

—Internal mode control to model autonomous subsystems

— External mode control to model coordinated operational
modes

* Alternate system configurations
—Reachability of mode combinations

* Reduced analysis space
—Less conservative analysis results

» Management of consistent configuration
—Inconsistency identification through analysis
—Inconsistency repair through selective reconfiguration

www.aadl.info

Carnegie Mellon
Software Engineering Institute

* QOverview of SAE AADL Standard

» AADL-Based Development Environment
» Case Studies
* AADL Language Concepts
— Components
— Component interaction & flows
— Faults & modes
Large-scale development & extensions

» Open Source AADL Tool Environment
e Summary

www.aadl.info

Outline: An Introduction & Overview

* Model-Based Architecture-Driven System Engineering

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

Component Evolution

Partially complete component type and implementation
Multiple implementations for a component type

Extension & refinement

— Component templates to be completed

— Variations and extensions in interface (component type)
— Variations and extensions in implementations

Example of Dual
Redundancy pattern

www.aadl.info

Carnegie Mellon
Software Engineering Institute

Large-Scale Development

« Component type and implementation declarations in
packages
— Name scope for component types

Public and private package sections

Grouping into manageable units

Nested package naming

Qualified naming to manage name conflicts

Supports independent development of subsystems
Supports large-scale system of system development

www.aadl.info

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

AADL Language Extensions

* New properties through property sets

e Sublanguage extension
— Annex subclauses expressed in an annex-specific
sublanguage
» Project-specific language extensions

» Language extensions as approved SAE AADL
standard annexes

* Examples

Error Model

ARINC 653

Behavior

Constraint sublanguage

www.aadl.info

Carnegie Mellon
Software Engineering Institute

Example Annex Extension

THREAD t ANNEX cotre.behavior {**
FEATURES STATES
seml : DATA ACCESS semaphore; s0, s1, s2, s3, s4, s5, s6, s7, s8 : STATE;
sem2 : DATA ACCESS semaphore; sO : INITIAL STATE;
END t; TRANSITIONS
sO -[]-> s1 { PERIODIC_WAIT };
THREAD IMPLEMENTATION t.t1 s1-{]> s2 { COMPUTATION(L.9ms, 1.9ms) }
PROPERTIES s2 -[seml.wait ! (-1.0ms)]-> s3;

s3 -[]-> s4 { COMPUTATION(0.1ms, 0.1ms) };

Period => 13. H
eriod => 13.96ms, s4 -[sem2.wait ! (-1.0ms)]-> s5;

CRiEHAEiy => 1 s5 -[]-> 56 { COMPUTATION(2.5ms, 2.5ms) };
cotre::Phase => 0.0ms; $6 -[sem2.release ! |-> S7;
Dispatch_Pratocal => Periadic; s7 -[]-> s8 { COMPUTATION(L.5ms, 1.5ms) };
s8 -[seml.release !]-> sO;
),
END t.t1;

COTRE behavioral annex

s
Courtesy of ((%)T(E

www.aadl.info

COTRE thread
properties

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

System Safety Engineering

Capture the results of
* hazard analysis
» component failure modes & effects analysis
Specify and analyze
[Supported by Errorj

Model Annex

» Markov models
* partition isolation/event independence

Integration of system safety with architectural design
* enables cross-checking between models
e insures safety models and design architecture are
consistent
* reduces specification and verification effort

www.aadl.info

Carnegie Mellon
Software Engineering Institute

Error Modeling Approach

Error model annex clauses declare
— Error states and transitions
— Fault events & occurrence rates
— Error propagation & occurrence rates
— Masking of subcomponent and propagation errors

Architecture model provides
— Dependency information
— Basis for isolation analysis

error_free

fail_stopped babbling

propagate propagate
fail_stopped babbling

www.aadl.info

HE
=

modeler.org.cn

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

Outline: An Introduction & Overview

» Overview of SAE AADL Standard
* Model-Based Architecture-Driven System Engineering
* AADL-Based Development Environment
» Case Studies
 AADL Language Concepts
‘ Open Source AADL Tool Environment
* UML Profile of AADL
e Summary

www.aadl.info

Carnegie Mellon
Software Engineering Institute

Open Source AADL Tool Environment

* Developed by the SEI _ T,
¢ No cost CPL license e
*« OSATE Release 0.3.0 based on Eclipse Release 3

e Parsing & semantic checking of approved AADL

e Textto XML & XML to text Processed 21000 line
e Syntax-sensitive text editor AADL model

e Syntax-Sensitive AADL Object Editor

e AADL property viewer

¢ AADL to MetaH translator
¢ Online help

¢ Model instantiation

e First analysis plug-ins

Next release Nov 2004
Graphical editor
Multi-file support

Analysis plug-in development

www.aadl.info

S CarnegieMellon
—— Software Engineering Institute

AADL Meta Model

» Defined in Eclipse Modeling Framework (EMF)
— Collection of packages with multiple graphical views
— Separate from, but close to UML profile of AADL

» XML as persistent storage
— XMI specification from Ecore meta model
— Generated XML schema

* In-core AADL model
— Generated methods for AADL model manipulation
— Edit history, deep copy, object editor, graphical editor
— Methods to support
» AADL extends hierarchy
« feature “inheritance”
 property value “inheritance”

www.aadl.info ®

S CarnegieMellon
—— Software Engineering Institute

OSATE Plug-in Extensions

4 OSATE)
Textual AADL, Graphical AADL

XML/XMI AADL, AADL object model API
EMF AADL Front-end
(x o) -

ML/XMI, Metamodel
Change noatification
Multi-file support

Text editor
Object editor
Graphical editor

Text<->XML

Eclipse ¢
Platform independence Semantics
Extensible help (OSATE

Task & Problem Mgt Extensions

Team support Analysis template
Qlug-m developmeny Generation template
\AADL Semantic AP|

www.aadl.info

HE
s

modeler.org.cn

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

Tool Plug-in Example

public Object caseConnection(Connection conn) {
if (conn instanceof DataAccessConnection || conn instanceof BusAccessConnection)
return DONE;
PropertyHolder scxt = (PropertyHolder) conn.getSrcContext();
PropertyHolder dcxt = (PropertyHolder) conn.getDstContext();
if (sext == null || dext == null) return DONE;
if (scxt instanceof PortGroup)
scxt = conn.getContainingComponentimpl();
if (dcxt instanceof PortGroup)
dext = conn.getContainingComponentimpl();
IntegerValue spv = scxt.getSimplePropertyValue(* SEI"," SecurityLevel");
IntegerValue dpv = dcxt.getSimplePropertyValue(* SEI"," SecurityLevel");

if (spv == null || dpv == null) {

ErrorHandling.userError(conn,"Security level specification missing");

return DONE;

}
if (spv.getValue() > dpv.getValue())

ErrorHandling.userError(conn," Security level violation");

return DONE;

www.aadl.info

Carnegie Mellon
Software Engineering Institute

Security Level Example

property set SEl is

SecurityLevel : aadlinteger
applies to (thread, thread group, process,
system);

end SEI;

data signal
end signal;

thread peter
features
pe: in event port;
pd: out data port signal;
properties
SEl::SecurityLevel => 2;
end peter;

thread implementation peter.default
end peter.default;

thread pierre
features
pd: in data port signal;
pe: out event port;
properties
SEl::SecurityLevel => 1;
end pierre;

thread implementation pierre.default
end pierre.default;

process sys
end sys;

process implementation sys.impl
subcomponents
T1: thread peter.default;
T2: thread pierre.default;
connections
data port T1.pd -> T2.pd;
event port T2.pe -> Tl.pe;
end sys.impl;

www.aadl.info

— CarnegieMellon
— Software Engineering Institute

OSATE and External Tools

——mmmm e -~
1 Embry-Riddle !
| Reliability Analysis

(Stre

| OMNET+

1 Network
! simulation'

Architecture
Extraction ™
P van
Simulink/Matlab,
Dymola models
SScheduIing analysis
Reliability analysis

System
Verification
Manager (CMU)

MetaH Toolset
(Honeywell)

Isolation analysis
Runtime system
generation

TimeWeaver (CMU)
Distributed resource allocation
Multi-platform runtime system generation

TimeWiz Commercial Tool
Scheduling analysis
Execution trace analysis

www.aadl.info

— CarnegieMellon
—— Software Engineering Institute

OSATE Community Development

« www.aadl.info website
* OSATE Plug-in update site
» Bugzilla error reporting

» SEIl-Hosted CVS Development Server

 Availability of Source Code (CPL)
* Plug-in contributions

Graphical layout editor by USC
AADL to MetaH translator by SEI

www.aadl.info

Syntax-sensitive text editor by York U.

Error modeling support by Embry-Riddle

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

Outline: An Introduction & Overview

Overview of SAE AADL Standard

Model-Based Architecture-Driven System Engineering
AADL-Based Development Environment

Case Studies

AADL Language Concepts

Open Source AADL Tool Environment

=) UML Profile of AADL

Summary

www.aadl.info

L

e Melbin
Software Engineering Institute

UML Profile of AADL

e The UML 1.4 and 2.0 profiles of AADL
* Example
<placeholder for Ed Colbert material>

www.aadl.info

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

Outline: An Introduction & Overview

Overview of SAE AADL Standard

Model-Based Architecture-Driven System Engineering
AADL-Based Development Environment

Case Studies

AADL Language Concepts

Open Source AADL Tool Environment

UML Profile of AADL

Summary

www.aadl.info %

Carne
Software Engineering Institute

rerie Mellon

Summary of AADL Capabilities

AADL abstractions separate application architecture
concerns from runtime architecture concerns

AADL incorporates a run-time architecture perspective
through application system and execution platform
AADL is effective for specialized views of embedded,
real-time, high-dependability, software-intensive
application systems

AADL supports predictable system integration and
deployment through model-based system engineering
AADL component semantics facilitate the dialogue
between application and software experts

www.aadl.info o

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

Value of AADL-Based Development

Early Prediction and Verification (Tool-Supported)

— performance

— reliability

— system safety

» Component Compliance Verification (Tool-Supported)
— functional interface

— resource requirements

— system safety

System Integration and Verification (Tool-Supported)
— workstation testing

— system performance

— system safety verification

www.aadl.info

Carnegie Mellon
Software Engineering Institute

SAE AADL: An Enabler for Predictable
Embedded Systems Engineering

* Industry standard architecture modeling notation & model
interchange format facilitates

— Interchange of architecture models between contractors &
subcontractors

— Integration of architecture models for system of systems analysis

— Common architecture model for non-functional system property
analysis from different perspectives

— Interoperability of modeling, analysis, and generation tools
* Open Source AADL Tool Environment offers
— Low cost entrypoint to the use of SAE AADL
— Platform for in-house prototyping of project specific architecture
analysis
— Platform for architecture research with access to industrial models &
industry exposure to research results

www.aadl.info

HE
=

modeler.org.cn

Carnegie Mellon
Software Engineering Institute

Benefits

* Model-based system engineering benefits

Predictable runtime characteristics
addressed early and throughout life
cycle greatly reduces integration and
maintenance effort

+ Benefits of AADL as SAE standard

confidence in language stability, broad

‘ AADL as standard provides
adoption, and strong tool support

www.aadl.info

Carnegie Mellon
Software Engineering Institute

The End

» For information go to www.aadl.info

www.aadl.info

HE
=

modeler.org.cn

